Math 320 Linear Algebra Assignment \# 12

1. Consider:

$$
A=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & -2 & 5 \\
0 & 0 & 1 & -1 & -2 & 1 \\
0 & 0 & 0 & 0 & -2 & 4 \\
1 & 2 & 3 & 5 & -1 & 2
\end{array}\right], \quad B=\left[\begin{array}{cccccc}
1 & 2 & 3 & 5 & -1 & 2 \\
0 & 0 & 1 & -1 & -2 & 1 \\
0 & 0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

where B is the output of doing Gaussian elimination on A.
(a) Find elemenry matrices $E_{1}, E_{2}, \ldots, E_{r}$ such that:

$$
E_{r} E_{r-1} \ldots E_{2} E_{1} A=B
$$

(b) Find an invertible matrix C such that $C A=B$.
(c) Do the matrix multiplication to show that indeed $C A=B$.
(d) Find $E_{1}^{-1}, E_{2}^{-1}, \ldots, E_{r}^{-1}$ (that is find the inverse of the elementary matrices found above).
(e) Use the previous part to find C^{-1}.
(f) Verify by matrix multiplication that $A=C^{-1} B$.
2. Consider the ordered basis:

$$
\mathscr{B}=\left(\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)
$$

for $\mathbb{R}^{2 \times 2}$ and

$$
\mathscr{D}=\left(x^{3}+1, x^{2}+1, x+1, x^{3}\right)
$$

be an ordered basis for P_{3}.
Also let $T_{1}: \mathbb{R}^{2 \times 2} \rightarrow P_{3}$ defined by:

$$
T_{1}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=(a+2 c) x^{3}+a x^{2}+(b+d) x+2 b+2 d
$$

Also let: $T_{2}: P_{3} \rightarrow \mathbb{R}^{2 \times 2}$ be defined by:

$$
T_{2}\left(a x^{3}+b x^{2}+c x+d\right)=\left[\begin{array}{cc}
a & a+b \\
a+c & 2 a+b
\end{array}\right]
$$

Find:
(a) $\operatorname{Rep}_{\mathscr{B}, \mathscr{D}}\left(T_{1}\right)$
(b) $\operatorname{Rep}_{\mathscr{D}, \mathscr{B}}\left(T_{2}\right)$
(c) $\operatorname{rank}\left(T_{1}\right)$
(d) $\operatorname{nullity}\left(T_{2}\right)$

