$\begin{array}{c} \text{Math 320 Linear Algebra} \\ \text{Assignment $\#$ 12} \end{array}$

1. Consider:

A =	0	0	0	0	-2	5			[1	2	3	5	-1	2	2].
	0	0	1	-1	-2	1		D	0	0	1	-1	-2	1	
	0	0	0	0	-2	4	,	$D \equiv$	0	0	0	0	1	-2	
	[1	2	3	5	-1	2			0	0	0	0	0	1	

where B is the output of doing Gaussian elimination on A.

(a) Find elemenry matrices E_1, E_2, \ldots, E_r such that:

$$E_r E_{r-1} \dots E_2 E_1 A = B$$

- (b) Find an invertible matrix C such that CA = B.
- (c) Do the matrix multiplication to show that indeed CA = B.
- (d) Find $E_1^{-1}, E_2^{-1}, \ldots, E_r^{-1}$ (that is find the inverse of the elementary matrices found above).
- (e) Use the previous part to find C^{-1} .
- (f) Verify by matrix multiplication that $A = C^{-1}B$.
- 2. Consider the ordered basis:

$$\mathscr{B} = \left(\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right)$$

for $\mathbb{R}^{2\times 2}$ and

$$\mathscr{D} = (x^3 + 1, x^2 + 1, x + 1, x^3)$$

be an ordered basis for P_3 .

Also let $T_1 : \mathbb{R}^{2 \times 2} \to P_3$ defined by:

$$T_1\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = (a+2c)x^3 + ax^2 + (b+d)x + 2b + 2d.$$

Also let: $T_2: P_3 \to \mathbb{R}^{2 \times 2}$ be defined by:

$$T_2(ax^3 + bx^2 + cx + d) = \begin{bmatrix} a & a+b\\ a+c & 2a+b \end{bmatrix}$$

Find:

- (a) $\operatorname{Rep}_{\mathscr{B},\mathscr{D}}(T_1)$
- (b) $\operatorname{Rep}_{\mathscr{D},\mathscr{B}}(T_2)$
- (c) $\operatorname{rank}(T_1)$
- (d) nullity (T_2)