Math 320 Linear Algebra
 Assignment \# 9

1. For each of the following determine if the given function is a linear transformation. Either prove it is or give an example that show it isn't:
(a) $T_{1}: P_{3} \rightarrow \mathbb{R}^{2}$ defined by:

$$
T_{1}\left(a x^{3}+b x^{2}+c x+d\right)=\left[\begin{array}{c}
a b \\
c
\end{array}\right] .
$$

(b) $T_{2}: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{3}$ defined by:

$$
T_{2}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{c}
a+b \\
a-b \\
c
\end{array}\right] .
$$

(c) $T_{3}: \mathscr{C}(\mathbb{R}, \mathbb{R}) \rightarrow \mathbb{R}$ (where $\mathscr{C}(\mathbb{R}, \mathbb{R})$ is the set of continuous functions on the reals) defined by:

$$
T_{3}(f)=\int_{0}^{1} f
$$

2. Consider $D: P \rightarrow P$ (remember P is the set of all polynomials of any degree) defined by $D(f)=f^{\prime}$.
(a) Show that D is a linear transformation
(b) Show that D is not 1-1.
(c) Determine (with proof) whether or not D is onto.
3. Let $f: P_{2} \rightarrow \mathbb{R}^{3}$ defined by:

$$
f\left(a x^{2}+b x+c\right)=\left[\begin{array}{c}
a+b \\
a+c \\
a
\end{array}\right]
$$

Show that f is an isomorphism.
4. Suppose that W and V are vector spaces and $f: W \rightarrow V$ is an isomorphism. Finish showing $f^{-1}: V \rightarrow W$ is an isomorphism but showing that for all $\alpha \in \mathbb{R}$ and $\vec{v} \in V, f^{-1}(\alpha \vec{v})=\alpha f^{-1}(\vec{v})$.

