Math 320 Linear Algebra Assignment \# 11

1. In each case find $\operatorname{Rep}(T)$, the matrix of the linear transformation, T.
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by:

$$
T\left(\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-8 \\
14
\end{array}\right], \quad T\left(\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-8 \\
-14
\end{array}\right], \quad T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-2 \\
-14
\end{array}\right]
$$

(b) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ where $T(\vec{v})$ is \vec{v} after its be rotated by 60° clockwise.
2. Suppose W, V, U be vector spaces, and T_{1} and T_{2} be linear transformation, with $T_{1}: W \rightarrow V$ and $T_{2}: V \rightarrow U$. Show that:
(a) $\mathscr{R}\left(T_{2} \circ T_{1}\right) \leq \mathscr{R}\left(T_{2}\right)$
(b) $\mathscr{N}\left(T_{1}\right) \leq \mathscr{N}\left(T_{2} \circ T_{1}\right)$
(Note to show that for example $\mathscr{R}\left(T_{2} \circ T_{1}\right) \leq \mathscr{R}\left(T_{2}\right)$ it is enough to show that every element of $\mathscr{R}\left(T_{2} \circ T_{1}\right)$ is in $\mathscr{R}\left(T_{2}\right)$ (since we already know that both are vector spaces you only need to show the subset part))

