$\begin{array}{c} \text{Math 320 Linear Algebra} \\ \text{Assignment $\#$ 11} \end{array}$

- 1. In each case find $\operatorname{Rep}(T)$, the matrix of the linear transformation, T.
 - (a) $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by:

$$T\left(\begin{bmatrix}3\\2\\1\end{bmatrix}\right) = \begin{bmatrix}-8\\14\end{bmatrix}, \qquad T\left(\begin{bmatrix}-1\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-8\\-14\end{bmatrix}, \qquad T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}-2\\-14\end{bmatrix}$$

- (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ where $T(\vec{v})$ is \vec{v} after its be rotated by 60° clockwise.
- 2. Suppose W, V, U be vector spaces, and T_1 and T_2 be linear transformation, with $T_1 : W \to V$ and $T_2 : V \to U$. Show that:
 - (a) $\mathscr{R}(T_2 \circ T_1) \leq \mathscr{R}(T_2)$
 - (b) $\mathcal{N}(T_1) \leq \mathcal{N}(T_2 \circ T_1)$

(Note to show that for example $\mathscr{R}(T_2 \circ T_1) \leq \mathscr{R}(T_2)$ it is enough to show that every element of $\mathscr{R}(T_2 \circ T_1)$ is in $\mathscr{R}(T_2)$ (since we already know that both are vector spaces you only need to show the subset part))