Math 320 Linear Algebra
 Assignment \# 4

1. Consider:

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 3 & 0 & -2 \\
3 & 0 & -6 & 0 & 15 \\
1 & 0 & -2 & 1 & 9 \\
2 & -3 & -13 & 0 & 16
\end{array}\right]
$$

and

$$
\vec{b}=\left[\begin{array}{c}
-6 \\
57 \\
32 \\
56
\end{array}\right]
$$

(a) Show that

$$
A\left[\begin{array}{c}
2 \\
3 \\
-1 \\
1 \\
3
\end{array}\right]=\vec{b}
$$

(b) Find the solution set to the homogenous system of linear equations:

$$
A \vec{x}=\overrightarrow{0} .
$$

Write your answer in the form of a spanning set (or a vector plus a spanning set).
(c) Find the solution set to the system of linear equations:

$$
A \vec{x}=\vec{b}
$$

Write your answer in the form of a spanning set (or a vector plus a spanning set).
2. Show that vector space properties 2 and 8 hold for the vector space \mathbb{R}^{m}.
3. Show that vector space properties 4,5 and 9 hold for the vector space P_{n} (that is the space of polynomials of degree less than n.)
4. Show that vector space properties 7 hold for the vector space $\mathbb{R}^{m \times n}$ (that is the matrices of size $m \times n$.
5. The polynomials $x+1$ and $x^{2}+2$ are "vectors" in the vector space P_{2}. Describe the set span $(x+$ $\left.1, x^{2}+2\right)$.
6. Let V be a vector space.
(a) Show that if $\vec{v}, \vec{w} \in V$ and $\vec{v}+\vec{w}=\overrightarrow{0}$ then $\vec{w}=-\vec{v}$.
(b) Show that if $\vec{v} \in V$ then $(-1) \vec{v}=-\vec{v}$.

