Math 320 Linear Algebra Assignment \# 10

1. Each of the following you may assume are linear transformation. For each find a basis for both $\mathscr{R}(T)$ and $\mathscr{N}(T)$. Find $\operatorname{rank}(T)$ and nullity (T). Verify the rank and nullity theorem for this particular example.
(a) $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{3}$ defined by:

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{c}
a+b \\
a-b \\
c
\end{array}\right]
$$

(b) Let $T: P_{2} \rightarrow \mathbb{R}^{3}$ defined by:

$$
T\left(a x^{2}+b x+c\right)=\left[\begin{array}{c}
a+b \\
a+c \\
a
\end{array}\right]
$$

(c) $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ defined by $T(\vec{v})=A \vec{v}$ where:

$$
A=\left[\begin{array}{llll}
3 & 3 & 1 & 3 \\
2 & 1 & 3 & 4
\end{array}\right]
$$

(d) $T: P_{2} \rightarrow \mathbb{R}$ defined by $T(p(x))=\int_{0}^{1} p(x)$.
(e) $T: P_{n} \rightarrow P_{n}$ defined by $T(p(x))=p^{\prime}(x)$.
2. For each of the following you may assume that \mathscr{B} is a basis for V. Find the following:
(a) Let $V=\mathbb{R}^{3}, \mathscr{B}=\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)$. Find $\operatorname{Rep}_{\mathscr{B}}\left(\left[\begin{array}{c}4 \\ -2 \\ 6\end{array}\right]\right)$.
(b) Let $V=\mathbb{R}^{2 \times 2}, \mathscr{B}=\left(\left[\begin{array}{ll}1 & -1 \\ 2 & -2\end{array}\right],\left[\begin{array}{cc}1 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ 3 & 2\end{array}\right],\left[\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right]\right)$. Find $\operatorname{Rep}_{\mathscr{B}}\left(\left[\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right]\right)$.
(c) Let $V=P_{2}, \mathscr{B}=\left(x^{2}+x-2, x^{2}-3 x+4, x^{2}+1\right)$. Find $\operatorname{Rep}_{\mathscr{B}}\left(x^{2}\right)$.
3. Suppose W, V and U are vector spaces and $f: W \rightarrow V, g: V \rightarrow U$. Prove:
(a) If f and g are one-to-one then $g \circ f$ is one-to-one.
(b) If f and g are linear transformations then $g \circ f$ is a linear transformation.
4. Suppose that W and V are vector spaces and $T: W \rightarrow V$ is a linear transformation. Show that $\mathscr{N}(T)=\left\{\vec{w} \in W: T(\vec{w})=\overrightarrow{0}_{V}\right\}$ is indeed a subspace of W.

