Math 320 Linear Algebra Assignment # 10

- 1. Each of the following you may assume are linear transformation. For each find a basis for both $\mathscr{R}(T)$ and $\mathscr{N}(T)$. Find rank(T) and nullity(T). Verify the rank and nullity theorem for this particular example.
 - (a) $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^3$ defined by:

$$T\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = \begin{bmatrix}a+b\\a-b\\c\end{bmatrix}.$$

(b) Let $T: P_2 \to \mathbb{R}^3$ defined by:

$$T(ax^{2} + bx + c) = \begin{bmatrix} a+b\\a+c\\a \end{bmatrix}$$

(c) $T: \mathbb{R}^4 \to \mathbb{R}^2$ defined by $T(\vec{v}) = A\vec{v}$ where:

$$A = \begin{bmatrix} 3 & 3 & 1 & 3 \\ 2 & 1 & 3 & 4 \end{bmatrix}$$

- (d) $T: P_2 \to \mathbb{R}$ defined by $T(p(x)) = \int_0^1 p(x)$.
- (e) $T: P_n \to P_n$ defined by T(p(x)) = p'(x).
- 2. For each of the following you may assume that \mathscr{B} is a basis for V. Find the following:

(a) Let
$$V = \mathbb{R}^3$$
, $\mathscr{B} = \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right)$. Find $\operatorname{Rep}_{\mathscr{B}} \left(\begin{bmatrix} 4 \\ -2 \\ 6 \end{bmatrix} \right)$.
(b) Let $V = \mathbb{R}^{2 \times 2}$, $\mathscr{B} = \left(\begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 3 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \right)$. Find $\operatorname{Rep}_{\mathscr{B}} \left(\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} \right)$.
(c) Let $V = P_2$, $\mathscr{B} = \left(x^2 + x - 2, x^2 - 3x + 4, x^2 + 1 \right)$. Find $\operatorname{Rep}_{\mathscr{B}} \left(x^2 \right)$.

- 3. Suppose W, V and U are vector spaces and $f: W \to V, g: V \to U$. Prove:
 - (a) If f and g are one-to-one then $g \circ f$ is one-to-one.
 - (b) If f and g are linear transformations then $g \circ f$ is a linear transformation.
- 4. Suppose that W and V are vector spaces and $T: W \to V$ is a linear transformation. Show that $\mathcal{N}(T) = \{\vec{w} \in W: T(\vec{w}) = \vec{0}_V\}$ is indeed a subspace of W.