Math 320 Linear Algebra
 Assignment \# 5

1. Let V be a vector space and $W=\{\overrightarrow{0}\}$. Show that W is a subspace of V. This is called the trivial subspace of V.
2. Let V be a vector space. And $\vec{v} \in V$ with $\vec{v} \neq \overrightarrow{0}$.
(a) Show if $r \vec{v}=\overrightarrow{0}$ then $r=0$. (We showed the other direction in class).
(b) Show if $r_{1}, r_{2} \in \mathbb{R}$ and $r_{1} \vec{v}=r_{2} \vec{v}$ then $r_{1}=r_{2}$.
(c) Show that if W is a subspace of V and W is non-trivial (i.e. $W \neq\{\overrightarrow{0}\}$). then W is infinite.
3. For each of the following determine (with proof) if W is a subspace of the vector space V.
(a) $V=\mathbb{R}^{4}$ and

$$
W=\left\{\left[\begin{array}{c}
a+2 b \\
0 \\
3 a+b \\
c
\end{array}\right]: a, b, c \in \mathbb{R}\right\}
$$

(b) $V=P_{4}$ and

$$
W=\left\{a x^{3}+b x^{2}+2 x+c: a, b, c \in \mathbb{R}\right\}
$$

(c) $V=\mathbb{R}^{2 \times 2}$ and

$$
W=\left\{\left[\begin{array}{cc}
a & a^{2} \\
b & 0
\end{array}\right]: a, b \in \mathbb{R}\right\}
$$

(d) $V=\mathbb{R}^{3}$ and

$$
\left\{\vec{x} \in \mathbb{R}^{3}: A \vec{x}=\vec{b}\right\}
$$

where:

$$
A=\left[\begin{array}{ccc}
1 & -2 & 7 \\
3 & -2 & -1 \\
-1 & 8 & 2
\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]
$$

(e) $V=\mathscr{F}(\mathbb{R}, \mathbb{R})$ (the set of all function from the \mathbb{R} to the \mathbb{R}).

$$
W=\{f \in \mathscr{F}(\mathbb{R}, \mathbb{R}): f(2)=0\}
$$

4. Let

$$
A=\left[\begin{array}{ccccc}
2 & 0 & 4 & 4 & 0 \\
0 & 1 & -2 & -1 & 0 \\
0 & 2 & -4 & -2 & 4 \\
1 & 0 & 2 & 2 & 0
\end{array}\right]
$$

and

$$
\vec{b}=\left[\begin{array}{c}
4 \\
3 \\
10 \\
2
\end{array}\right]
$$

and

$$
\overrightarrow{v_{1}}=\left[\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right], \quad \overrightarrow{v_{2}}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right], \quad \overrightarrow{v_{3}}=\left[\begin{array}{c}
4 \\
-2 \\
-4 \\
2
\end{array}\right], \quad \overrightarrow{v_{4}}=\left[\begin{array}{c}
4 \\
-1 \\
-2 \\
2
\end{array}\right], \quad \overrightarrow{v_{5}}=\left[\begin{array}{l}
0 \\
0 \\
4 \\
0
\end{array}\right]
$$

(a) Does $A \vec{x}=\vec{b}$ have a solution? If so find one.
(b) Is $\vec{b} \in \operatorname{span}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \overrightarrow{v_{3}}, \overrightarrow{v_{4}}, \overrightarrow{v_{5}}\right)$? If so find $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \in \mathbb{R}$ so that $b=a_{1} \overrightarrow{v_{1}}+a_{2} \overrightarrow{v_{2}}+a_{3} \overrightarrow{v_{3}}+$ $a_{4} \overrightarrow{v_{4}}+a_{5} \overrightarrow{v_{5}}$. How is this related to the previous part?

