Math 320 Linear Algebra Assignment \# 14

1. Consider

$$
A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 0 & 4 \\
0 & a & -1
\end{array}\right]
$$

Given that $\operatorname{det}(A)=\frac{2}{3}$, find A (i.e. find a the only missing part of A).
2. Consider:

$$
C=\left[\begin{array}{cccc}
-2 & 2 & 4 & 1 \\
4 & -8 & -9 & 1 \\
-6 & -2 & 7 & 10 \\
0 & 8 & -7 & -5
\end{array}\right]
$$

(a) Show that $C=L U$ where:

$$
L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
3 & 2 & 1 & 0 \\
0 & -2 & 3 & 1
\end{array}\right] \quad U=\left[\begin{array}{cccc}
-2 & 2 & 4 & 1 \\
0 & -4 & -1 & 3 \\
0 & 0 & -3 & 1 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

This is called the $L U$-decomposition for C where we can write a matrix as a product of a lower triangular matrix with diagonals of 1 and an upper triangular matrix. The way to get it is by using a modified version of the Gaussian elimination.
(b) Use this to find $\operatorname{det}(C)$.
3. Let:

$$
A=\left[\begin{array}{cccc}
2 & 5 & 0 & 3 \\
-1 & a & 2 & 5 \\
0 & 2 & 0 & -1 \\
-2 & -1 & 0 & 0
\end{array}\right]
$$

(a) Find $\operatorname{det}(A)$
(b) Notice that $\operatorname{det}(A)$ does not depend on a. Are there any other values that can be change (while not changing any other values) that does not change the determinate?
4. Suppose that $\lambda \in \mathbb{R}$ is an eigenvalue for $A \in \mathbb{R}^{n \times n}$. (That is there exists $\overrightarrow{v_{0}} \neq 0$ called an eigenvector such that $\left.A \overrightarrow{v_{0}}=\lambda \overrightarrow{v_{0}}\right)$. Let $E_{\lambda}=\left\{\vec{v} \in \mathbb{R}^{n}: A \vec{v}=\lambda v\right\}$. Show that E_{λ} is a subspace of \mathbb{R}^{n}.
5. Let

$$
A=\left[\begin{array}{ccc}
14 / 3 & -5 / 3 & 1 \\
17 / 3 & -8 / 3 & 1 \\
1 & -1 & 2
\end{array}\right]
$$

Consider:

$$
\mathscr{B}=\left\{\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]\right\} .
$$

(a) Show that \mathscr{B} is an eigenbasis with respect to A and find the corresponding eignenvalues?
(b) Find D and P so that $A=P D P^{-1}$.
6. Find an eigenbasis for

$$
A=\left[\begin{array}{ccc}
-3 & -3 & 6 \\
0 & 0 & -6 \\
0 & 0 & -3
\end{array}\right]
$$

