Math 320 Linear Algebra Assignment \# 9

1. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $\operatorname{define} \operatorname{det}(A)=a d-b c$.
(a) Show that if $\operatorname{det}(A)=0$ then A is does not row reduce to the identity matrix and hence is not invertible (i.e is singular). (Hint use two cases, $a=0$ and $a \neq 0$.)
(b) Conversely show that if $\operatorname{det}(A) \neq 0$ then A is invertible and $A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$ by showing that $A A^{-1}=I_{2}$.
2. Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a 1-1 and onto linear transformation. Finish showing $T^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is also linear by showing that for all $c \in \mathbb{R}$ and $\vec{v} \in \mathbb{R}^{n}, T^{-1}(c \vec{v})=c T^{-1}(\vec{v})$.
