$\begin{array}{c} \text{Math 320 Linear Algebra} \\ \text{Assignment $\# 5$} \end{array}$

1. Consider the set of vectors, $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5, \vec{v}_6\}$. Suppose that the matrix:

 $A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 & \vec{v}_4 & \vec{v}_5 & \vec{v}_6 \end{bmatrix}$

is row equivalent to

[3	2	-1	3/2	-1	5]
0	2	1	2	3	1
0	0	0	3/7	-4	8
0	0	0	$3/2 \\ 2 \\ 3/7 \\ 0$	0	16

.

- (a) Is $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5, \vec{v}_6\}$ linearly independent or dependent?
- (b) Is $\{\vec{v}_1, \vec{v}_2\}$ linearly independent or dependent?
- (c) Is $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ linearly independent or dependent?
- (d) Is $\vec{v}_3 \in \text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_4, \vec{v}_5, \vec{v}_6)$?
- (e) Is $\vec{v}_3 \in \operatorname{span}(\vec{v}_1, \vec{v}_2)$?
- (f) Is $\vec{v}_4 \in \text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3)$?
- (g) Is $\vec{v}_5 \in \text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4)$?
- (h) Let

$$\vec{u} = \begin{bmatrix} 2\\3\\4\\5 \end{bmatrix}.$$

Is $\vec{u} \in \text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5, \vec{v}_6)$?

(i) Let

$$\vec{w} = \begin{bmatrix} 2\\4\\5 \end{bmatrix}$$

Is $\vec{w} \in \text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5, \vec{v}_6)$?