Math 320 Linear Algebra
 Assignment \# 6

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by:

$$
T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{c}
a+b \\
3 c
\end{array}\right]
$$

(a) Find:

$$
5 \cdot T\left(\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]\right)
$$

(b) Find:

$$
T\left(5 \cdot\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right]\right)
$$

(c) Are the previous two parts equal? Does that guarantee that T is linear?
(d) Prove that T is linear by using the one step verification.
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by:

$$
T\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=\left[\begin{array}{c}
a-2 b \\
3 b \\
2 a-b
\end{array}\right]
$$

(a) Either prove that T is linear by finding A such that $T(\vec{v})=A \vec{v}$, or show that T is not linear with a specific example.
(b) Find \vec{v} such that $T(\vec{v})=\left[\begin{array}{c}10 \\ -9 \\ 11\end{array}\right]$, or explain why no such \vec{v} exists.
(c) Find \vec{v} such that $T(\vec{v})=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$, or explain why no such \vec{v} exists.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by:

$$
T\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)=\left[\begin{array}{c}
a \\
a^{2}+1 \\
-b
\end{array}\right]
$$

(a) Either prove that T is linear by finding A such that $T(\vec{v})=A \vec{v}$, or show that T is not linear with a specific example.
(b) Find \vec{v} such that $T(\vec{v})=\left[\begin{array}{c}10 \\ -9 \\ 11\end{array}\right]$, or explain why no such \vec{v} exists.
(c) Find \vec{v} such that $T(\vec{v})=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$, or explain why no such \vec{v} exists.

Let
$\vec{U}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right], \vec{V}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ be genar elaman)
of \mathbb{R}^{3}. Also kd $c, d \in \mathbb{R}$ be generl.
Then:

$$
\begin{aligned}
& T(c \vec{u}+d \vec{v}) \\
& =T\left(\left[\begin{array}{c}
c u_{1}+d v_{1} \\
c u_{2}+d v_{2} \\
c u_{2}+d v_{3}
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
c u_{1}+d v_{1}-\left(c u_{2}+d v_{2}\right) \\
3\left(c u_{3}+d v_{3}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
c\left(u_{1}-u_{2}\right)+d\left(v_{1}-v_{2}\right) \\
3 c u_{2}+3 d v_{3}
\end{array}\right]
\end{aligned}
$$

$A 150$

$$
\begin{aligned}
& C T(\vec{l})+d T(\vec{v}) \\
= & C\left[\begin{array}{c}
u_{1}-u_{2} \\
3 u_{3}
\end{array}\right]+d\left[\begin{array}{l}
v_{1}-v_{2} \\
3 v_{3}
\end{array}\right]
\end{aligned}
$$

- -.11 . .

$$
\begin{aligned}
& =\left[\begin{array}{c}
c\left(u_{1}-u_{2}\right) \\
3\left(u_{0}\right.
\end{array}\right]+\left[\begin{array}{c}
a\left(v_{1}-v_{2}\right) \\
3 d v_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
c\left(u_{1}-u_{2}\right)+d\left(v_{1}-v_{2}\right) \\
3\left(u_{3}\right) \perp 3 d v_{2}
\end{array}\right]
\end{aligned}
$$

So $T\left(c \vec{u}+d_{\vec{v}}\right)=T(\vec{u})+d T(\vec{v})$ Since $\overrightarrow{a r}, \vec{v}, c, d$ are genera if fill (w) that T is liner.

