Math 320 Linear Algebra Assignment \# 8

1. Suppose X, Y and Z are sets (not necessarily of vectors) and $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Show that if both f and g are 1-1 (injections) then $g \circ f: X \rightarrow Z$ is 1-1.
2. Suppose $A, B, C \in \mathbb{R}^{m \times n}$. Prove that:

$$
A+(B+C)=(A+B)+C
$$

3. Suppose that $B, C \in \mathbb{R}^{p \times m}$ and $A \in \mathbb{R}^{m \times n}$. Prove that:

$$
(B+C) A=B A+C A
$$

If you want to see an example of a proof like this, I recored one at: Matrix Multiplication Proof Video
4. Suppose $A \in \mathbb{R}^{m \times n}$, and $B \in \mathbb{R}^{n \times p}$. Show if the columns of B are linearly dependent then so are the columns of $A B$.

