$\begin{array}{c} \text{Math 320 Linear Algebra} \\ \text{Assignment } \# \ 8 \end{array}$

- 1. Suppose X,Y and Z are sets (not necessarily of vectors) and $f:X\to Y$ and $g:Y\to Z$. Show that if both f and g are 1-1 (injections) then $g\circ f:X\to Z$ is 1-1.
- 2. Suppose $A, B, C \in \mathbb{R}^{m \times n}$. Prove that:

$$A + (B+C) = (A+B) + C$$

3. Suppose that $B, C \in \mathbb{R}^{p \times m}$ and $A \in \mathbb{R}^{m \times n}$. Prove that:

$$(B+C)A = BA + CA$$

If you want to see an example of a proof like this, I recored one at:

Matrix Multiplication Proof Video

4. Suppose $A \in \mathbb{R}^{m \times n}$, and $B \in \mathbb{R}^{n \times p}$. Show if the columns of B are linearly dependent then so are the columns of AB.