$\begin{array}{c} \text{Math 320 Linear Algebra} \\ \text{Assignment } \# \ 10 \end{array}$

- 1. Suppose the X and Y are sets (don't assume they are sets of vectors they are just sets). Let $f: X \to Y$ and $g: Y \to Z$. Prove that $g \circ f: X \to Z$ is onto then g is onto.
- 2. Suppose $A \in \mathbb{R}^{m \times n}$. Show $\operatorname{Col}(A)$ is a subpace of \mathbb{R}^m . Remember that $\operatorname{Col}(A) = \{ \vec{b} \in \mathbb{R}^m : \exists \vec{u} \in \mathbb{R}^n, \text{ such that } A\vec{u} = \vec{b} \}$. I made a short video that might help with this problem: Null space and column space video
- 3. Suppose $A \in \mathbb{R}^{m \times n}$ and $\vec{b} \in \mathbb{R}^m$ with $\vec{b} \neq \vec{0}$. Let $H = \{\vec{u} \in \mathbb{R}^n : A\vec{u} = \vec{b}\}$. Either prove H is a subspace of \mathbb{R}^n or explain why it isn't.