Math 320 Linear Algebra Assignment \# 10

1. Suppose the X and Y are sets (don't assume they are sets of vectors they are just sets). Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Prove that $g \circ f: X \rightarrow Z$ is onto then g is onto.
2. Suppose $A \in \mathbb{R}^{m \times n}$. Show $\operatorname{Col}(A)$ is a subpace of \mathbb{R}^{m}.

Remember that $\operatorname{Col}(A)=\left\{\vec{b} \in \mathbb{R}^{m}: \exists \vec{u} \in \mathbb{R}^{n}\right.$, such that $\left.A \vec{u}=\vec{b}\right\}$.
I made a short video that might help with this problem: Null space and column space video
3. Suppose $A \in \mathbb{R}^{m \times n}$ and $\vec{b} \in \mathbb{R}^{m}$ with $\vec{b} \neq \overrightarrow{0}$. Let $H=\left\{\vec{u} \in \mathbb{R}^{n}: A \vec{u}=\vec{b}\right\}$. Either prove H is a subspace of \mathbb{R}^{n} or explain why it isn't.

