$\begin{array}{c} \text{Math 320 Linear Algebra} \\ \text{Assignment $\#$ 11} \end{array}$

- 1. Show that vector space properties 4,5 and 9 hold for the vector space P_n (that is the space of polynomials of degree n or less.)
- 2. The polynomials x + 1 and $x^2 + 2$ are "vectors" in the vector space P_2 . Describe the set span $(x + 1, x^2 + 2)$.
- 3. Let V be a vector space.
 - (a) Show that if $\vec{v}, \vec{w} \in V$ and $\vec{v} + \vec{w} = \vec{0}$ then $\vec{w} = -\vec{v}$.
 - (b) Show that if $\vec{v} \in V$ then $(-1)\vec{v} = -\vec{v}$.
- 4. Let V be a vector space and $W = {\vec{0}}$. Show that W is a subspace of V. This is called the trivial subspace of V.
- 5. Let V be a vector space, and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p \in V$. Let $H = \operatorname{span}(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p)$. Show that H is a subspace of V.

I made a short video that might help with this problem: Spanning set Proof video

6. For each of the following determine (with proof) if W is a subspace of the vector space V.
(a) V = R⁴ and

$$W = \left\{ \begin{bmatrix} a+2b\\0\\3a+b\\c \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$

(b) $V = P_4$ and $W = \left\{ax^3 + bx^2 + 2x + c : a, b, c \in \mathbb{R}\right\}$ (c) $V = \mathbb{R}^{2 \times 2}$ and

$$W = \left\{ \begin{bmatrix} a & a^2 \\ b & 0 \end{bmatrix} : a, b \in \mathbb{R} \right\}$$

(d) $V = \mathbb{R}^3$ and

$$W = \left\{ \vec{x} \in \mathbb{R}^3 : A\vec{x} = \vec{b} \right\}$$

where:

$$A = \begin{bmatrix} 1 & -2 & 7 \\ 3 & -2 & -1 \\ -1 & 8 & 2 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$$

(e) $V = \mathscr{F}(\mathbb{R}, \mathbb{R})$ (the set of all function from the \mathbb{R} to the \mathbb{R}).

$$W = \left\{ f \in \mathscr{F}(\mathbb{R}, \mathbb{R}) : f(2) = 0 \right\}.$$