Math 320 Linear Algebra Assignment \# 10

1. Let

$$
A=\left[\begin{array}{ccccc}
-2 & 1 & 0 & 0 & -1 \\
3 & 2 & -2 & 0 & 0 \\
-3 & -1 & 3 & 5 & 1 \\
0 & 0 & -2 & 0 & 3 \\
-3 & -1 & 1 & 0 & 0
\end{array}\right]
$$

(a) Find $\operatorname{det}(A)$ by expanding on the first row.
(b) Find $\operatorname{det}(A)$ by expanding on a different row or column.
2. Let $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}-3 & 1 \\ -2 & -2\end{array}\right]$. Find the following:
(a) $\operatorname{det}(A)$
(b) $\operatorname{det}(B)$
(c) $A B$
(d) $\operatorname{det}(A B)$
(e) $\operatorname{Show} \operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(A B)$.
3. In this problem we are going to an important theorem. Let V and W be vectors spaces and $T: V \rightarrow W$ be an isomorphism (a $1-1$ and onto linear transformation). Furthermore let $\mathscr{B}=$ $\left\{\overrightarrow{v_{1}}, \vec{v}_{2}, \ldots, \vec{v}_{r}\right\} \subseteq V$ and $\mathscr{D}=\left\{T\left(\overrightarrow{v_{1}}\right), T\left(\vec{v}_{2}\right), \ldots, T\left(\vec{v}_{r}\right)\right\} \subseteq W$.
(a) If \mathscr{B} is linearly independent in V then \mathscr{D} is linearly independent in W. Here is a short video that will help with this part.
(b) If \mathscr{B} is spans V then \mathscr{D} spans W. Here is a short video that will help with this part.
(c) If \mathscr{B} are a basis for V then \mathscr{D} are a basis for W.
(Hint: this should be very straight forward from the previous part)
4. Consider $V=\mathbb{R}^{2 \times 2}$ and let

$$
\mathscr{B}=\left\{\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right\}
$$

(a) What is $\operatorname{dim} V$
(b) Show that \mathscr{B} is linearly independent.
(c) Why can you conclude from above that \mathscr{B} is a basis for V ?
(d) Let

$$
A=\left[\begin{array}{ll}
2 & 4 \\
1 & 1
\end{array}\right]
$$

Find $[A]_{\mathscr{B}}$. (Hint: Your answer should be an element of \mathbb{R}^{4}. Remember the order of \mathscr{B} matters.)
5. Let $T: \mathbb{R}^{2 \times 2} \rightarrow P_{2}$ be defined by:

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=b x^{2}+b x+c
$$

(Hint: Only the first problem should require much in the way of work)
(a) Find a basis for $\operatorname{ker}(T)$.
(b) Find $\operatorname{dim}(\operatorname{ker}(T))$.
(c) Find $\operatorname{dim}(\operatorname{Rg}(T))$
(d) Find a basis for $\operatorname{Rg}(T)$
(e) Is T onto?

