Math 320 Linear Algebra Assignment \# 12

1. Suppose that $A, B, C \in \mathbb{R}^{n \times n}$ with $A \sim B$ and $B \sim C$. Show that $A \sim C$.
2. Let

$$
A=\left[\begin{array}{ccc}
14 / 3 & -5 / 3 & 1 \\
17 / 3 & -8 / 3 & 1 \\
1 & -1 & 2
\end{array}\right] .
$$

Consider:

$$
\mathscr{B}=\left\{\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]\right\} .
$$

(a) Show that \mathscr{B} is an eigenbasis with respect to A and find the corresponding eignenvalues?
(b) Find D and P so that $A=P D P^{-1}$.
3. Find an eigenbasis for

$$
A=\left[\begin{array}{ccc}
-3 & -3 & 6 \\
0 & 0 & -6 \\
0 & 0 & -3
\end{array}\right]
$$

4. Consider the matrix

$$
A=\left[\begin{array}{ccc}
-13 & -10 & 5 \\
20 & 17 & -10 \\
10 & 10 & -8
\end{array}\right]
$$

(a) Find $\operatorname{tr}(A)$
(b) Find $\operatorname{det}(A)$ (You can use an online calculator if you don't need more practice).
(c) Show $\operatorname{char}(A)=-x^{3}-4 x^{2}+3 x+18$ (the characteristic polynomial of A).
(d) Find the eigenvalues of A. (Hint: the eigenvalues are integers so you can find roots by graphing the polynomial)
(e) Find an eigenbasis for \mathbb{R}^{3} with respect to A. (You can use an online row-reducing calculator unless you need more practice)
(f) Find invertible matrix P and diagonal matrix D so that $A=P D P^{-1}$.

