$\begin{array}{c} \text{Math 320 Linear Algebra} \\ \text{Assignment $\# 7$} \end{array}$

- 1. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and define $\det(A) = ad bc$.
 - (a) Show that if det(A) = 0 then A is does not row reduce to the identity matrix and hence is not invertible (i.e is singular). (Hint use two cases, a = 0 and $a \neq 0$.)
 - (b) Conversely show that if $\det(A) \neq 0$ then A is invertible and $A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ by showing that $AA^{-1} = I_2$.
- 2. Consider:

A =	[0]	0	0	0	-2	5			Γ1	2	3	5	-1	2]].
	0	0	1	-1	-2	1		D	0	0	1	-1	-2	1	
	0	0	0	0	-2	4	,	$D \equiv$	0	0	0	0	1	-2	
	1	2	3	5	-1	2			0	0	0	0	0	1	

where B is the output of doing Gaussian elimination on A.

(a) Find elementary matrices E_1, E_2, \ldots, E_r such that:

$$E_r E_{r-1} \dots E_2 E_1 A = B$$

- (b) Find an invertible matrix C such that CA = B.
- (c) Do the matrix multiplication to show that indeed CA = B.
- (d) Find $E_1^{-1}, E_2^{-1}, \ldots, E_r^{-1}$ (that is find the inverse of the elementary matrices found above).
- (e) Use the previous part to find C^{-1} .
- (f) Verify by matrix multiplication that $A = C^{-1}B$.