Math 320 Linear Algebra Assignment \# 7

1. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $\operatorname{define} \operatorname{det}(A)=a d-b c$.
(a) Show that if $\operatorname{det}(A)=0$ then A is does not row reduce to the identity matrix and hence is not invertible (i.e is singular). (Hint use two cases, $a=0$ and $a \neq 0$.)
(b) Conversely show that if $\operatorname{det}(A) \neq 0$ then A is invertible and $A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$ by showing that $A A^{-1}=I_{2}$.
2. Consider:

$$
A=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & -2 & 5 \\
0 & 0 & 1 & -1 & -2 & 1 \\
0 & 0 & 0 & 0 & -2 & 4 \\
1 & 2 & 3 & 5 & -1 & 2
\end{array}\right], \quad B=\left[\begin{array}{cccccc}
1 & 2 & 3 & 5 & -1 & 2 \\
0 & 0 & 1 & -1 & -2 & 1 \\
0 & 0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

where B is the output of doing Gaussian elimination on A.
(a) Find elementary matrices $E_{1}, E_{2}, \ldots, E_{r}$ such that:

$$
E_{r} E_{r-1} \ldots E_{2} E_{1} A=B
$$

(b) Find an invertible matrix C such that $C A=B$.
(c) Do the matrix multiplication to show that indeed $C A=B$.
(d) Find $E_{1}^{-1}, E_{2}^{-1}, \ldots, E_{r}^{-1}$ (that is find the inverse of the elementary matrices found above).
(e) Use the previous part to find C^{-1}.
(f) Verify by matrix multiplication that $A=C^{-1} B$.

