Math 320 Linear Algebra Assignment \# 11

1. Let $T: P_{2} \rightarrow \mathbb{R}^{2 \times 2}$ be defined by:

$$
T\left(a x^{2}+b x+c\right)=\left[\begin{array}{cc}
a+b & a \\
b & c
\end{array}\right]
$$

You can assume without proof that T is linear. (Hint: Only the first problem should require much in the way of work, the rest can be solved from theorems in the class.)
(a) Find a basis for $\operatorname{ker}(T)$.
(b) Find $\operatorname{dim}(\operatorname{ker}(T))$.
(c) Find $\operatorname{dim}(\operatorname{Rg}(T))$
(d) Find a basis for $\operatorname{Rg}(T)$
(e) Is T 1-1?
(f) Is T onto?
2. Let V and W be vector spaces with $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$. Also $T: V \rightarrow W$ is a linear transformation. Determine which of the following statements are always true explain your answer.
(a) If $m<n$ then T is not 1-1.
(b) If $m>n$ then T is not 1-1.
(c) If $m<n$ then T is not onto.
(d) If $m>n$ then T is not onto.
3. Consider

$$
A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 0 & 4 \\
0 & a & -1
\end{array}\right]
$$

Given that $\operatorname{det}(A)=\frac{2}{3}$, find A (i.e. find a the only missing part of A).
4. Consider:

$$
C=\left[\begin{array}{cccc}
-2 & 2 & 4 & 1 \\
4 & -8 & -9 & 1 \\
-6 & -2 & 7 & 10 \\
0 & 8 & -7 & -5
\end{array}\right]
$$

(a) Show that $C=L U$ where:

$$
L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
3 & 2 & 1 & 0 \\
0 & -2 & 3 & 1
\end{array}\right] \quad U=\left[\begin{array}{cccc}
-2 & 2 & 4 & 1 \\
0 & -4 & -1 & 3 \\
0 & 0 & -3 & 1 \\
0 & 0 & 0 & -2
\end{array}\right]
$$

This is called the $L U$-decomposition for C where we can write a matrix as a product of a lower triangular matrix with diagonals of 1 and an upper triangular matrix. The way to get it is by using a modified version of the Gaussian elimination.
(b) Use this to find $\operatorname{det}(C)$.
5. Suppose that $\lambda \in \mathbb{R}$ is an eigenvalue for $A \in \mathbb{R}^{n \times n}$. (That is there exists $\overrightarrow{v_{0}} \neq 0$ called an eigenvector such that $\left.A \overrightarrow{v_{0}}=\lambda \overrightarrow{v_{0}}\right)$. Let $E_{\lambda}=\left\{\vec{v} \in \mathbb{R}^{n}: A \vec{v}=\lambda v\right\}$. Show that E_{λ} is a subspace of \mathbb{R}^{n}.

