$\begin{array}{c} \text{Math 320 Linear Algebra} \\ \text{Assignment $\#$ 4} \end{array}$

1. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be defined by:

$$T\left(\begin{bmatrix}a\\b\\c\end{bmatrix}\right) = \begin{bmatrix}a+b\\3c\end{bmatrix}$$
$$5 \cdot T\left(\begin{bmatrix}2\\-1\\2\end{bmatrix}\right)$$

(b) Find:

(a) Find:

$$T\left(5\cdot \begin{bmatrix} 2\\-1\\2 \end{bmatrix}\right)$$

- (c) Are the previous two parts equal? Does that guarantee that T is linear?
- (d) Prove that T is linear by using the one step verification.
- 2. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by:

$$T\left(\begin{bmatrix}a\\b\end{bmatrix}\right) = \begin{bmatrix}a-2b\\3b\\2a-b\end{bmatrix}$$

- (a) Either prove that T is linear by finding A such that $T(\vec{v}) = A\vec{v}$, or show that T is not linear with a specific example.
- (b) Find \vec{v} such that $T(\vec{v}) = \begin{bmatrix} 10\\ -9\\ 11 \end{bmatrix}$, or explain why no such \vec{v} exists.
- (c) Find \vec{v} such that $T(\vec{v}) = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$, or explain why no such \vec{v} exists.
- 3. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by:

$$T\left(\begin{bmatrix}a\\b\end{bmatrix}\right) = \begin{bmatrix}a\\a^2+1\\-b\end{bmatrix}$$

- (a) Either prove that T is linear by finding A such that $T(\vec{v}) = A\vec{v}$, or show that T is not linear with a specific example.
- (b) Find \vec{v} such that $T(\vec{v}) = \begin{bmatrix} 10\\-9\\11 \end{bmatrix}$, or explain why no such \vec{v} exists. (c) Find \vec{v} such that $T(\vec{v}) = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}$, or explain why no such \vec{v} exists.
- 4. Suppose that $T : \mathbb{R}^n \to \mathbb{R}^m$ has the one-step verification property, that is for all $\vec{u}, \vec{v} \in \mathbb{R}^n$ and $c, d \in \mathbb{R}, T(c\vec{u} + d\vec{v}) = cT(\vec{u}) + dT(\vec{v})$. Show that $T(c\vec{u}) = cT(\vec{u})$. This finishes the proof of the one-step verification.