$\begin{array}{c} \text{Math 320 Linear Algebra} \\ \text{Assignment } \# \ 6 \end{array}$

1. Suppose that $B,C\in\mathbb{R}^{p\times m}$ and $A\in\mathbb{R}^{m\times n}$. Prove that:

$$(B+C)A = BA + CA$$

If you want to see an example of a proof like this, I recored one at:

Matrix Multiplication Proof Video

- 2. (a) Suppose X, Y and Z are sets (not necessarily of vectors) and $f: X \to Y$ and $g: Y \to Z$. Show that if $g \circ f: X \to Z$ is 1-1 (injection) then f is 1-1. (Hint: Suppose $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X$ then prove $x_1 = x_2$.)
 - (b) Clearly write the contrapositive of this statement.
 - (c) Suppose $A \in \mathbb{R}^{m \times n}$, and $B \in \mathbb{R}^{n \times p}$. Show if the columns of B are linearly dependent then so are the columns of AB.

If you are new to proving things are 1-1, this video should really help:

Proving Functions are 1-1