Math 320 Linear Algebra Assignment \# 6

1. Suppose that $B, C \in \mathbb{R}^{p \times m}$ and $A \in \mathbb{R}^{m \times n}$. Prove that:

$$
(B+C) A=B A+C A
$$

If you want to see an example of a proof like this, I recored one at:
Matrix Multiplication Proof Video
2. (a) Suppose X, Y and Z are sets (not necessarily of vectors) and $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Show that if $g \circ f: X \rightarrow Z$ is 1-1 (injection) then f is 1-1. (Hint: Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$ then prove $x_{1}=x_{2}$.)
(b) Clearly write the contrapositive of this statement.
(c) Suppose $A \in \mathbb{R}^{m \times n}$, and $B \in \mathbb{R}^{n \times p}$. Show if the columns of B are linearly dependent then so are the columns of $A B$.
If you are new to proving things are 1-1, this video should really help:
Proving Functions are 1-1

