Math 320 Linear Algebra Assignment \# 5

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by rotating every vector by $2 \pi / 3\left(120^{\circ}\right)$ counter-clockwise. Find the standard matrix of this transformation.
2. Let:

$$
A=\left[\begin{array}{ccccc}
-4 & -8 & -2 & -8 & -7 \\
1 & 2 & 0 & 0 & -1 \\
2 & 4 & 1 & 4 & 7 / 2 \\
2 & 4 & 1 & 0 & -5 / 2
\end{array}\right]
$$

and define $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $T(\vec{v})=A \vec{v}$.
(a) What are m and n ?
(b) Use the Gauss-Jordon algorithm to show that A reduces to:

$$
U=\left[\begin{array}{ccccc}
1 & 2 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 / 2 \\
0 & 0 & 0 & 1 & 3 / 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(c) Is T one-to-one?
(d) Is T onto?
(e) Find $\vec{b} \in \mathbb{R}^{4}$ such that $\vec{b} \notin \operatorname{Im}(T)$.

