Math 320 Linear Algebra Assignment \# 9

1. Let V be a vector space and $W=\{\overrightarrow{0}\}$. Show that W is a subspace of V. This is called the trivial subspace of V.
2. Let V be a vector space, and $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p} \in V$. Let $H=\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right)$. Show that H is a subspace of V.
I made a short video that might help with this problem: Spanning set Proof video
3. Let V, W be vector spaces and $T: V \rightarrow W$ be a linear transformation. Show that $\operatorname{ker}(T)$ is a subspace (not just a subset) of V.
In the following video I show it is true for $\operatorname{Rg}(T)$. Range of T is a subspace video
4. For each of the following determine (with proof) if W is a subspace of the vector space V.
(a) $V=\mathbb{R}^{4}$ and

$$
W=\left\{\left[\begin{array}{c}
a+2 b \\
0 \\
3 a+b \\
c
\end{array}\right]: a, b, c \in \mathbb{R}\right\}
$$

(b) $V=P_{4}$ and

$$
W=\left\{a x^{3}+b x^{2}+2 x+c: a, b, c \in \mathbb{R}\right\}
$$

(c) $V=\mathbb{R}^{2 \times 2}$ and

$$
W=\left\{\left[\begin{array}{cc}
a & a^{2} \\
b & 0
\end{array}\right]: a, b \in \mathbb{R}\right\}
$$

(d) $V=\mathbb{R}^{3}$ and

$$
W=\left\{\vec{x} \in \mathbb{R}^{3}: A \vec{x}=\vec{b}\right\}
$$

where:

$$
A=\left[\begin{array}{ccc}
1 & -2 & 7 \\
3 & -2 & -1 \\
-1 & 8 & 2
\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]
$$

(e) $V=\mathscr{F}(\mathbb{R}, \mathbb{R})$ (the set of all function from the \mathbb{R} to the \mathbb{R}).

$$
W=\{f \in \mathscr{F}(\mathbb{R}, \mathbb{R}): f(2)=0\}
$$

5. For each of the following either show the transformation is a linear transformation or show it is not. Here are some videos that could help:
Proving a function is a linear transformation
Proving a function is not a linear transformation
(a) $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{3}$ defined by:

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{c}
2 a+b \\
a \\
0
\end{array}\right]
$$

(b) Let $T: P_{2} \rightarrow \mathbb{R}^{3}$ defined by:

$$
T\left(a x^{2}+b x+c\right)=\left[\begin{array}{c}
a+b \\
a c \\
a
\end{array}\right]
$$

6. Each of the following you may assume are linear transformation. For each find a basis for both $\operatorname{Rg}(T)$ and $\operatorname{ker}(T)$. If you need another example of how to find a basis here is a video: Find a basis for Kernel and Range of a Transformation
(a) $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{3}$ defined by:

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{c}
a+b \\
a-b \\
c
\end{array}\right]
$$

(b) Let $T: P_{2} \rightarrow \mathbb{R}^{3}$ defined by:

$$
T\left(a x^{2}+b x+c\right)=\left[\begin{array}{c}
a+b \\
a+c \\
a
\end{array}\right]
$$

(c) $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ defined by $T(\vec{v})=A \vec{v}$ where:

$$
A=\left[\begin{array}{llll}
3 & 3 & 1 & 3 \\
2 & 1 & 3 & 4
\end{array}\right]
$$

(d) $T: P_{2} \rightarrow \mathbb{R}$ defined by $T(p(x))=\int_{0}^{1} p(x)$.

