Math 350 Probability - Exam 1 - Fall 2007

Instructions:Answer each question completely and show all work.

1. You are dealt 3 cards from a standard deck. What is the probability that you either have at least two aces or at least two kings?
2. A fair k-sided die is one in which the numbers $\{1,2, \ldots, k\}$ are rolled with equal probability.

Suppose fair $4,6,8,12$ and 20 -sided dice are placed in a bag and selected at random (each of the 5 dice is equally likely to be selected) and then that die is rolled.
(a) What is the probability a 7 is rolled?
(b) What is the conditional probability that the 8 -sided die was selected given that a 7 is rolled?
(c) Suppose that a die selected from the bag and rolled 3 times (so the same die is rolled 3 times). What is the probability that one of the 4 -sided dice was chosen given that all 3 rolls are between 1 and 4 ?
3. In a certain community, 36% of the families own a dog, and 22% of the familes that own a dog also own a cat. In addition, 30% of families own a cat.
What is:
(a) the probability that a randomly selected family owns both a dog and a cat
(b) the probability that a randomly selected family owns a dog given that it owns a cat?
4. Suppose that events E_{1}, E_{2} and E_{3} are independent with $\mathrm{P}\left(E_{1}\right)=p_{1}, \mathrm{P}\left(E_{2}\right)=p_{2}$ and $\mathrm{P}\left(E_{3}\right)=p_{3}$. Further suppose that E_{4} is disjoint with each of E_{1}, E_{2}, E_{3} and $\mathrm{P}\left(E_{4}\right)=p_{4}$.
(a) Find the probability of that:
i. both E_{1} and E_{2} occur but not E_{3}.
ii. at least one of the events E_{1}, E_{2} or E_{3} occurs.
iii. at least one of the events E_{1}, E_{2}, E_{3} or E_{4} occurs.
iv. exactly two of the four events occur.
(b) Give an example of an experiment and four events E_{1}, E_{2}, E_{3} and E_{4} that satisfy the above conditions.
5. Prove that if A, B, C, D are independent events then the events $A \cap B$ and $C \cap D$ are independent.

You may turn a solutions to this question on Monday, but you cannot talk to other people about it.
6. Bonus Question Let A_{1}, A_{2}, \ldots be an infinite sequence of independent events with:

$$
\mathrm{P}\left(A_{k}\right)=\frac{1}{2}
$$

Prove that:

$$
P\left(\bigcup_{k=1}^{\infty} A_{k}\right)=1
$$

(Hint show that:

$$
P\left(\bigcup_{k=1}^{\infty} A_{k}\right)>1-\epsilon
$$

for any $\epsilon>0$.

