Math 350 Probability - Exam 2 - Fall 2007

Instructions:Answer each question completely and show all work.

1. Suppose an urn contains 5 red balls and 3 black balls. Also suppose that balls are withdrawn from the urn one at a time without replacement. Let X be the number of balls withdrawn before a red ball is drawn (including the draw that contains the red ball).
(a) Find the probability mass function $p_{X}(k)$ for X.
(b) Find $\mathrm{E}(X)$.
(c) Find $\operatorname{Var}(X)$.
2. Suppose $X \sim \mathcal{B}\left(1000, \frac{1}{50}\right)$. Estimate $P(17 \leq X \leq 21)$ using:
(a) the Poisson Distribution
(b) the normal Distribution
3. An airline finds that 7% of the people making reservations on a certain flight will not show up for the flight.

If the airline sells 164 tickets for a flight with only 155 seats, what is the probability that a seat will be available for every person holding a reservation who actually arrives for the flight.
4. Let X be a continuous random variable with pdf given by:

$$
f_{X}(x)= \begin{cases}\frac{c}{x^{2}} & \text { if } x \geq 1 \\ 0 & \text { if } x<1 .\end{cases}
$$

(a) What is the value of c ?
(b) Find the cumulative distribution function of X.
(c) What can you say about $E(X)$?
5. You arrive at a bus stop at 10 o'clock, knowing that the bus will arrive at some time uniformly distributed between 10 and 10:30.
(a) What is the probability that you will have to wait longer than 10 minutes?
(b) If at 10:15 the bus has not yet arrived, what is the probability that you will have to wait at least an additional 10 minutes?
6. Suppose that an average of 7 calls come into a call center every minute. Find the distribution of the following random variables including the values of any parameters also find the expected value and variance of each random variable.
(a) X where X is the number of calls in a 5 minute period.
(b) T_{1} where T_{1} is the amount of time until the first call.
(c) T_{2} where T_{2} is the amount of time between the third and forth call.
(d) Y where Y is the number of minutes amongst the first 1000 minutes in which there are no calls.
(e) Find an approximate distribution of Y in part 6 d .

