Problems from Assignment 21

1. Suppose that N is a Poisson process with rate λ. Let X be the time until the second event occurs.
(a) Using the same approach that we did with the waiting time for the first event, show that:

$$
f_{X}(x)= \begin{cases}\lambda^{2} x e^{-\lambda x} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(b) Notice this the same pdf we got from the sum of two independent exponential distributions. Explain why that makes sense.
(c) Suppose $\lambda=\frac{1}{4}$. Find $\mathrm{P}(3 \leq X \leq 9)$, using:
i. $f_{X}(x)$ above
ii. the distributions of N (remember N consists of infinitely many random variables).

