Problems from Assignment 18

1. (a) Suppose $X, Y, Z \stackrel{\mathrm{iid}}{\sim} \mathscr{E}(\lambda)$ (remember we switched the parameterization of \mathscr{E}). Let $V=X+$ $Y+Z$, find $f_{V}(v)$.
Hint: Let $W=X+Y$ and remember we found $f_{W}(w)$ in class.
(b) Suppose that X has pdf:

$$
f_{X}(x)= \begin{cases}\frac{\lambda^{k} x^{k-1}}{(k-1)!} e^{-\lambda x} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Further suppose $Y \sim \mathscr{E}(\lambda)$ and is independent of X. Let $W=X+Y$ and show:

$$
f_{W}(w)= \begin{cases}\frac{\lambda^{k+1} w^{k}}{k!} e^{-\lambda w} & w \geq 0 \\ 0 & \text { otherwise } .\end{cases}
$$

(c) Suppose the $X_{1}, X_{2}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \mathscr{E}(\lambda)$ and let $W=X_{1}+X_{2}+\ldots+X_{n}$. Use induction to show that:

$$
f_{W}(w)= \begin{cases}\frac{\lambda^{n} w^{n-1}}{(n-1)!} e^{-\lambda w} & w \geq 0 \\ 0 & \text { otherwise } .\end{cases}
$$

Hint: You have basically already proven this and you just need to notice you have proven it and put the pieces together.
2. Prove Theorem 3.8.5

