- 1. Let $X \sim \mathscr{E}(\lambda)$.
 - (a) Show that:

$$m_X(t) = \frac{\lambda}{\lambda - t}$$

when $t < \lambda$.

- (b) Show that $m_X(0) = 1$.
- (c) Show that $m'_X(0) = \frac{1}{\lambda}$.
- (d) Show that $m''_X(0) = \frac{2}{\lambda^2}$.

2. Find $m_X(t)$ where X is defined as below:

- (a) If you last name starts with A-E then $X \sim \mathscr{G}(p)$
- (b) If you last name starts with F-O then $X \sim \mathscr{U}(a, b)$
- (c) If you last name starts with P-Z then X is discrete uniform on the set $\{1, 2, \ldots, n\}$. That is:

$$f_X(k) = \begin{cases} \frac{1}{n} & k \in \{1, 2, 3, \dots, n\} \\ 0 & \text{otherwise} \end{cases}$$

3. Show that if X has moment generating function and W = aX + b:

$$m_W(t) = e^{bt} m_X(at)$$

- 4. Let $X \sim \mathscr{P}(\lambda)$ use moment generating functions to find:
 - (a) E(X)
 - (b) $E(X^2)$