Problems from Assignment 10

1. Prove Theorem 3.8.5
2. Suppose $X, Y \stackrel{\text { iid }}{\sim} \mathscr{E}(\lambda)$ and $W=\frac{Y}{X}$ then in class we showed that:

$$
f_{W}(w)= \begin{cases}\frac{1}{(w+1)^{2}} & w \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Show that $f_{W}(w)$ is indeed a pdf.
(b) Find $\mathrm{P}(X<Y)$. (You can do this problem without a calculation)
(c) Find the median of W.
(d) Find $E(W)$.
3. Let $X_{1}, X_{2}, X_{3} \sim \mathscr{B e r}\left(\frac{1}{2}\right)$ and let $W=\left(2 X_{1}-1\right)\left(X_{2}+X_{3}\right)$ and $V=W^{2}$.
(a) Find the pdf of W.
(b) Find $E(W)$
(c) Find $E(V)$
(d) Find $E\left(W^{3}\right)$
(e) Show that W and V are uncorrelated.
(f) Show that W and V are not independent.
4. Suppose 8 people separately enter an elevator with eleven floors (not including the ground floor). Suppose that each of people independently choose a floor that is equally likely to be any of the 11 . What is the expected number of floors that will be visited?

