Problems from Assignment 7

1. Let X have probability density function given by:

$$
f_{X}(x)= \begin{cases}2(1-x), & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Let $W=X^{2}$. It can be shown (and we will show it later) that the pdf of W is:

$$
f_{W}(w)= \begin{cases}\frac{1}{\sqrt{w}}-1, & 0 \leq w \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the $E(W)$ in two ways one using the pdf of W and one using the pdf of X.
2. Let X be a random with pdf given by:

$$
f_{X}(x)= \begin{cases}4 x e^{-2 x}, & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Show $f_{X}(x)$ is indeed a pdf.
(b) Find $E(X)$.
(c) Show that the mode of X is $\frac{1}{2}$.
(d) Find $F_{X}(x)$.
(e) Show that the median of X is between 0.839 and 0.84 .
3. Let $X \sim \mathscr{G}(p)$ find:
(a) $\mathrm{E}[(X+1) X]$ (look at how we computed $E(X)$ in class)
(b) $\mathrm{E}\left(X^{2}\right)$
(c) $\operatorname{Var}(X)$
4. We say that U has a uniform distribution on the interval $[a, b]$ (written $U \sim \mathscr{U}(a, b)$ with $a<b$) if is is continuous with the pdf:

$$
f_{U}(u)=\left\{\begin{array}{lc}
\frac{1}{b-a}, & a \leq u \leq b \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Show $f_{U}(u)$ is indeed a pdf.
(b) Suppose $a \leq c \leq d \leq b$, find $\mathrm{P}(c \leq U \leq d)$.
(c) Graph $f_{U}(u)$ and guess what $E(U)$ should be.
(d) Find $\mathrm{E}(U)$.
(e) What about a and b do you think will make the variance bigger, smaller?
(f) Find $\operatorname{Var}(U)$.
(g) Find $F_{U}(u)$.
(h) Find the median of U.

