Problems from Assignment 6

1. Suppose that $X \sim \mathscr{E}(\lambda)$ with $(\lambda>0)$. Thus X has pdf:

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

(a) Show $\int_{-\infty}^{\infty} f_{X}(x) d x=1$
(b) Find $F_{X}(x)$ the cdf for X.
(c) Show that X has the memory-less property, where if $s, t>0$ then:

$$
\mathrm{P}(X>s+t \mid X>s)=\mathrm{P}(X>t)
$$

2. Let $X \sim \mathscr{G}(p)$ with $(0<p \leq 1)$.
(a) Let t be a positive integer find $F_{X}(t)$.
(b) Let t be a positive integer find $\mathrm{P}(X>t)$.
(c) Show that the geometric distribution has the discrete version of the memory-less property, where if s, t are positive integers then:

$$
\mathrm{P}(X>s+t \mid X>s)=\mathrm{P}(X>t)
$$

(d) Explain why this makes sense with the interpretation of the geometric distribution.

