Problems from Assignment 9

1. Suppose $X_{1}, X_{2}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} \mathscr{E}(\mu)$. What is $f_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
2. (a) Suppose $X_{1}, X_{2}, X_{3} \stackrel{\text { iid }}{\sim} \mathscr{E}(\lambda)$. Let $V=X_{1}+X_{2}+X_{3}$, find $f_{V}(v)$.

Hint: Let $W=X+X_{2}$ and remember we found $f_{W}(w)$ in class.
(b) Suppose $X_{1}, X_{2}, X_{3}, X_{4} \stackrel{\text { iid }}{\sim} \mathscr{E}(\lambda)$. Let $V=X_{1}+X_{2}+X_{3}+X_{4}$, find $f_{V}(v)$.
(c) Suppose that X has pdf:

$$
f_{X}(x)= \begin{cases}\frac{\lambda^{k} x^{k-1}}{(k-1)!} e^{-\lambda x} & x \geq 0 \\ 0 & \text { otherwise } .\end{cases}
$$

Further suppose $Y \sim \mathscr{E}(\lambda)$ and is independent of X. Let $W=X+Y$ and show:

$$
f_{W}(w)= \begin{cases}\frac{\lambda^{k+1} w^{k}}{k!} e^{-\lambda w} & w \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Note: What you have done is essentially prove (for those of you that know induction you can fill in the details) that if $X_{1}, X_{2}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \mathscr{E}(\lambda)$ and let $W=X_{1}+X_{2}+\ldots+X_{n}$ then:

$$
f_{W}(w)= \begin{cases}\frac{\lambda^{n} w^{n-1}}{(n-1)!} e^{-\lambda w} & w \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

