- 1. Show that $\Gamma(x+1) = x\Gamma(x)$.
- 2. Find $\Gamma(\frac{9}{2})$.
- 3. Find:

$$\frac{\Gamma(\frac{17}{3})}{\Gamma(\frac{2}{3})}$$

4. Suppose $X \sim \Gamma(r, \lambda)$. We showed that:

$$m_X(t) = \left(\frac{\lambda}{\lambda - t}\right)^r = \left(1 - \frac{t}{\lambda}\right)^{-r}$$

Use this to find:

- (a) $E(X^3)$
- (b) $\operatorname{Var}(X^2)$
- 5. Suppose $X_1, X_2, X_3, \ldots \stackrel{\text{iid}}{\sim} \mathscr{P}(3)$. As is common practice let $\overline{X}_n = \frac{X_1 + X_2 + X_3 + \ldots + X_n}{n}$.
 - (a) Find the exact value ${\rm P}(2.6 \le \overline{X}_2 \le 3.1)$
 - (b) Estimate $P(2.6 \le \overline{X}_{50} \le 3.1)$