Problems from Assignment 17

1. In the proof from class we had to construct a orthogonal matrix starting with the top row being \vec{p}. Do this for one particular example. Let

$$
\vec{p}=\left[\begin{array}{c}
\sqrt{\frac{1}{3}} \\
\sqrt{\frac{1}{3}} \\
\sqrt{\frac{1}{3}}
\end{array}\right] .
$$

Find \vec{v}_{1}, \vec{v}_{2} so that:

$$
A=\left[\begin{array}{c}
\vec{p}^{T} \\
\vec{v}_{1}^{T} \\
\vec{v}_{2}^{T}
\end{array}\right]
$$

is orthogonal.
2. Consider the setup from class. Suppose for that $\sum_{i=1}^{t} p_{i}=1$ and $W_{1}, W_{2}, \ldots, W_{t} \stackrel{\mathrm{iid}}{\sim} N(0,1)$. Then let:

$$
\vec{p}=\left[\begin{array}{c}
\sqrt{p_{1}} \\
\sqrt{p_{2}} \\
\vdots \\
\sqrt{p_{t}}
\end{array}\right], \vec{W}=\left[\begin{array}{c}
W_{1} \\
W_{2} \\
\vdots \\
W_{t}
\end{array}\right] .
$$

Finally let:

$$
\vec{Q}=\left[\begin{array}{c}
Q_{1} \\
Q_{2} \\
\vdots \\
Q_{t}
\end{array}\right]=\vec{W}-(\vec{W} \cdot \vec{p}) \vec{p}
$$

Find:
(a) $\operatorname{Var}\left(Q_{i}\right)$
(b) $\operatorname{Cov}\left(Q_{i}, Q_{j}\right)$ for $i \neq j$. (I know that we did this in class but it is worth it write it all clearly for yourself).

