Problems from Assignment 9

1. Show that $\Gamma(x+1)=x \Gamma(x)$.
2. For this problem you may use the fact that the density for the normal distribution is a density. That is you may use the fact that if $\sigma>0$ and $\mu \in \mathbb{R}$ then:

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x=1 .
$$

You may also use the fact that the density is symmetric around μ.
(a) Calculate:

$$
\int_{0}^{\infty} e^{-x^{2}} d x
$$

(b) Find $\Gamma\left(\frac{1}{2}\right)$. Hint: Do a substitution and then use the previous part.
(c) Calculate $\Gamma\left(\frac{11}{2}\right)$. Hint: Don't do an integral.
3. Let $X \sim \chi_{3}^{2}$, i.e. X has a chi-squared distribution with 3 degrees of freedom.
(a) Fill in the blanks: $X \sim \Gamma$ (_,
\qquad _—)).
(b) What is $f_{X}(x)$ (your answer should not have Γ in it)?
(c) Use Simpson's rule with 6 intervals to compute $\mathrm{P}(X \leq 6)$.
(d) How does this compare with Table A. 3 in your book?

