Problems from Assignment 9

- 1. Show that $\Gamma(x+1) = x\Gamma(x)$.
- 2. For this problem you may use the fact that the density for the normal distribution is a density. That is you may use the fact that if $\sigma > 0$ and $\mu \in \mathbb{R}$ then:

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx = 1.$$

You may also use the fact that the density is symmetric around μ .

(a) Calculate:

$$\int_0^\infty e^{-x^2}\,dx$$

- (b) Find $\Gamma(\frac{1}{2})$. Hint: Do a substitution and then use the previous part.
- (c) Calculate $\Gamma\left(\frac{11}{2}\right)$. Hint: Don't do an integral.
- 3. Let $X \sim \chi_3^2$, i.e. X has a chi-squared distribution with 3 degrees of freedom.
 - (a) Fill in the blanks: $X \sim \Gamma(_,_)$.
 - (b) What is $f_X(x)$ (your answer should not have Γ in it)?
 - (c) Use Simpson's rule with 6 intervals to compute $P(X \le 6)$.
 - (d) How does this compare with Table A.3 in your book?