Problems from Assignment 10

1. In class we are using the fact that if $X_{1}, X_{2}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ then:

$$
\bar{X}_{n} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Let's remind ourselves why this is true (this is actually a different proof then the one I gave in Math 350).
For this problem you may use the fact that the density for the normal distribution is a density. That is you may use the fact (you don't need to reprove it) that if $\sigma>0$ then:

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{u^{2}}{2 \sigma^{2}}} d u=1
$$

You may also use the fact (this is easy to prove and was certainly done in your probability class) that if $X \sim N\left(\mu, \sigma^{2}\right)$ then $a X+b \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)$.
Remember that the moment generating function for Y is:

$$
m_{Y}(t)=\mathrm{E}\left(e^{t Y}\right)=\int_{-\infty}^{\infty} e^{t y} f_{Y}(y) d y
$$

(a) Let $Y \sim N\left(0, \sigma^{2}\right)$ show that

$$
m_{Y}(t)=e^{\frac{t^{2} \sigma^{2}}{2}}
$$

Hint: Complete the square.
(b) Let $X \sim N\left(\mu, \sigma^{2}\right)$ find $m_{X}(t)$. Hint: $(X-\mu) \sim N\left(0, \sigma^{2}\right)$.
(c) Suppose $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$ with X_{1} and X_{2} being independent. Use the previous parts to show that $X_{1}+X_{2} \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.
(d) Prove by induction that if for $1 \leq i \leq n, X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$ with the random variables being independent then:

$$
\sum_{i=1}^{n} X_{i} \sim N\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

(e) Prove if $X_{1}, X_{2}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$ then:

$$
\bar{X}_{n} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

2. Suppose $Z_{1}, Z_{2}, Z_{3} \stackrel{\text { iid }}{\sim} N(0,1)$ and define:

$$
\begin{aligned}
& X_{1}=Z_{1}+2 Z_{2}-2 Z_{3} \\
& X_{2}=2 Z_{1}+Z_{2}+2 Z_{3} \\
& X_{3}=6 Z_{1}-6 Z_{2}-3 Z_{3}
\end{aligned}
$$

(a) What are the distributions of X_{1}, X_{2}, X_{3} and the relationship between them. (Hint: Use Fisher's Theorem)
(b) What is the distribution of $X_{1}+X_{2}+X_{3}$?
(c) Find $\mathrm{P}\left(X_{1}+X_{2}+X_{3} \leq 3\right)$.
(d) Find $a, b, c \in \mathbb{R}$ such that $a X_{1}^{2}+b X_{2}^{2}+c X_{3}^{2} \sim \chi_{3}^{2}$.

