Problems from Assignment 2

1. Remember, a continuous random variable is said to have an exponential distribution with rate λ written $X \sim \mathscr{E}(\lambda)$, if $\lambda>0$ and the pdf of X is:

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

Suppose $X_{1}, X_{2} \stackrel{\text { iid }}{\sim} \mathscr{E}\left(\frac{1}{3}\right)$.
(a) Find $\mathrm{P}\left(X_{2}=2\right)$.
(b) Find $\mathrm{P}\left(X_{2} \geq 3\right)$.
(c) Find $\mathrm{P}\left(X_{2} \geq 3, X_{1} \geq 1\right)$.
(d) Find $\mathrm{P}\left(X_{1}+X_{2} \geq 4\right)$.
2. If X is normal with mean μ and variance σ^{2} we write $X \sim N\left(\mu, \sigma^{2}\right)$ (notice the second parameter is the variance not the standard deviation that is different than the way it is sometimes written). Suppose $X_{1}, X_{2} \stackrel{\text { iid }}{\sim} N(3,9)$.
(a) Find $\mathrm{P}\left(X_{2}=2\right)$.
(b) Find $\mathrm{P}\left(X_{2} \geq 3\right)$.
(c) Find $\mathrm{P}\left(X_{2} \geq 3, X_{1} \geq 1\right)$.
(d) Find $\mathrm{P}\left(X_{1}+X_{2} \geq 4\right)$.

