Problems from Assignment 5

1. For this problem you may use the folloing integrals when $a>0$ and $n \in \mathbb{N}$:

$$
\begin{aligned}
\int_{0}^{a}\left(1-\frac{x}{a}\right)^{n-1} d x & =\frac{a}{n} \\
\int_{0}^{a} x\left(1-\frac{x}{a}\right)^{n-1} d x & =\frac{a^{2}}{n(n+1)} \\
\int_{0}^{a} x^{2}\left(1-\frac{x}{a}\right)^{n-1} d x & =\frac{2 a^{3}}{n(n+1)(n+2)} .
\end{aligned}
$$

Suppose $X_{1}, X_{2}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} \mathscr{U}(0, \theta)$ and let $X_{\text {min }}$ be the minimum of the n values.
(a) Find the pdf of $X_{\text {min }}$. (Hint: $F_{X_{\text {min }}}(x)=1-\mathrm{P}\left(X_{\min }>x\right)$.)
(b) Check that it is indeed a pdf.
(c) Find $\mathrm{E}\left(X_{\text {min }}\right)$.
(d) Choose c so $\hat{\theta}_{1}=c X_{\text {min }}$ is an unbiased estimator.
(e) Find $\operatorname{Var}\left(X_{\text {min }}\right)$.
(f) Compare thie to $\operatorname{Var}\left(X_{\max }\right)$ that we did in class, and explain why this makes sense.
(g) Find $\operatorname{Var}\left(\hat{\theta}_{1}\right)$.
(h) How does the efficency compare to $\hat{\theta}=\frac{n+1}{n} X_{\max }$.

