## Problems from Assignment 13

1. Let $V \sim \chi_{n}^{2}$. Also let $X_{1}, X_{2}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} \mathrm{N}\left(\mu, \sigma^{2}\right)$ and $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$.
(a) Show:

$$
E(\sqrt{V})=\frac{\sqrt{2} \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}
$$

Remember $E(g(X))=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$. And of course, you don't do the integration you relate it to integrals you already know.
(b) Find $\mathrm{E}(S)$.
(c) We have shown the $S^{2}$ is an unbiased estimator of $\sigma^{2}$. Is $S$ an unbiased estimator of $\sigma$ ?

