Problems from Assignment 11

1. (a) Suppose X and Y are independent random variables and suppose the $f_{Y}(y)$ is an even function. Show that $f_{Y / X}(w)$ is an even function.
(b) Show if $T \sim t_{n}$ then f_{T} is an even function. You may not use the density of T since we computed that using the fact that f_{T} is symmetric around the origin which you are now proving.
2. Let $T \sim t_{5}$.
(a) Write $f_{T}(t)$ without any Γ in it.
(b) Use Simpson's rule with $n=6$ intervals to estimate $\mathrm{P}(0 \leq T \leq 1.5)$.
(c) Using the above estimation, estimate $P(T \geq 1.5)$.
(d) Is this consistent with Table A. 2 in the book?
3. Suppose $X, Y \stackrel{\text { iid }}{\sim} N(0,1)$ and let $W=\frac{Y^{2}}{X^{2}}$.
(a) Find $f_{W}(w)$ (it should not include any Γ functions).
(b) Argue what $\mathrm{P}(W \leq 1)=\frac{1}{2}$ without doing integration.
(c) By doing a clever substitution, integrate $f_{W}(w)$ to show that $\mathrm{P}(W \leq 1)=\frac{1}{2}$.
