Math 351 Mathematical Statistics - Final Exam Spring 2020

Name: \qquad

1. Suppose $X_{1}, X_{2} \stackrel{\text { iid }}{\sim} N(0,1)$.
(a) What is the distribution of $3 X_{1}-2 X_{2}$?
(b) What is $\operatorname{Var}\left(3 X_{1} X_{2}\right)$?
(c) What is $\mathrm{E}\left(3 X_{1}^{2}-2 X_{2}^{2}\right)$?
(d) What is $\operatorname{Var}\left(3 X_{1}^{2}-2 X_{2}^{2}\right)$?
(e) Find $a, b, c \in \mathbb{R}$ so that $a\left(X_{1}+X_{2}\right)$ and $b X_{1}+c X_{2}$ are independent standard normal random variables.
2. One group of 9 men drank half a bottle of red wine each day for two weeks. The level of polyphenols in their blood was measured before and after the two-week period. Here are the precent changes in the level:

$$
3.5,8.1,7.4,4.0,0.7,4.9,8.4,7.0,5.5
$$

(Note: $\bar{x}=5.5$ and $\sum_{i=1}^{9}\left(x_{i}-\bar{x}\right)^{2}=50.68$.) For this problem suppose that the data comes from a normal distribution with mean μ and variance σ^{2}. Give a 90% confidence interval for μ when:
(a) it is assumed $\sigma^{2}=6$
(b) σ^{2} is unknown
3. Here are data from a study of seat belt use for Hispanic and white male drivers in Chicago:

Group	Drivers	Belted
Hispanic	539	286
White	292	164

Is there evidence that the two groups use seat belts at a different rate? Check this hypothesis at the $\alpha=0.05$ level.
4. For this problem suppose $X_{1}, X_{2}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \Gamma(3, \lambda)$. You may use the fact that:

$$
\int x^{2} e^{-x} d x=-\left(2+2 x+x^{2}\right) \mathrm{e}^{-x}+C
$$

(a) Find the Maximum Likelihood Estimator for λ.
(b) Find the Method of Moments Estimator for λ.
5. Suppose you collect the following data where x_{i} is the explanatory variable and Y_{i} is the response variable. You model this situation with the simple linear model $Y_{i}=$ $\beta_{1} x_{i}+\beta_{0}+\epsilon_{i}$, where $\epsilon_{i} \stackrel{\mathrm{idi}}{\sim} N\left(0, \sigma^{2}\right)$.

x_{i}	Y_{i}
1	2
1	0
-1	0
-1	-2
0	0

(Note: The data was created entirely for the purpose of easy calculation and not to be at all realistic.)
(a) Suppose you want to test the null hypothesis that $\beta_{1}=0$. Compute the T statistic for the test and say what distribution it would have under the null. Please give the exact value of the T statistic rather than a decimal approximation.
(b) Test the hypothesis that $\sigma^{2}=1$ versus the alternative that $\sigma^{2}>1$ at the 0.05 -level.
6. Suppose that for any x_{i}, Y_{i} is observed where $Y_{i}=2 x_{i}+1+\epsilon_{i}$, and $\epsilon_{i} \stackrel{\text { iid }}{\sim} N(0,4)$. Suppose that $n=26$ data points are collected where the x_{i} 's are chosen so that $\sum_{i=1}^{26}\left(x_{i}-\bar{x}\right)^{2}=4$.
(a) Find $\mathrm{P}\left(\hat{\beta}_{1}>3\right.$ and $\left.S^{2}>5.53\right)$, where $\hat{\beta}_{1}$ and S are the usual estimators for fitting a simple linear regression.
(b) Determine if $\hat{\beta}_{1} S^{2}$ an unbiased estimator of $\beta_{1} \sigma^{2}$. (make sure to explain).
(c) Is $\hat{\beta}_{1} S$ an unbiased estimator of $\beta_{1} \sigma$? (make sure to explain).

