1. Prove the sum and product of natural numbers is a natural number.

Hint:
Let $A=\{n \in \mathbb{N}: m+n \in \mathbb{N} \forall m \in \mathbb{N}\}$. Show that A is inductive. Do a similar thing for products.
2. Show that the sum and product of integers is an integer.

Hint:
First show that if $m, n \in \mathbb{N}$ and $m<n$ then $n-m \in \mathbb{N}$ by letting $A=\{m \in \mathbb{N}: n-m \in \mathbb{N} \forall n \in$ $\mathbb{N}, n>m\}$. Show A is inductive.

