1. Prove the sum and product of natural numbers is a natural number.

Hint:
Let \(A = \{ n \in \mathbb{N} : m + n \in \mathbb{N} \forall m \in \mathbb{N} \} \). Show that \(A \) is inductive. Do a similar thing for products.

2. Show that the sum and product of integers is an integer.

Hint:
First show that if \(m, n \in \mathbb{N} \) and \(m < n \) then \(n - m \in \mathbb{N} \) by letting \(A = \{ m \in \mathbb{N} : n - m \in \mathbb{N} \forall n \in \mathbb{N}, n > m \} \). Show \(A \) is inductive.