1. Prove that a sequence $\{a_n\}$ converges to L if and only if every subsequence $\{a_{n_k}\}$ has a further subsequence $\{a_{n_k_i}\}$ that converges to L.

Prove or find a counterexample to the each of the following (hint one of these follows immediately from a theorem in class so don't work too hard).

- 2. If $f: A \to \mathbb{R}$ is continuous and $[a, b] \subseteq f(A)$ then $f^{-1}([a, b])$ is a closed interval.
- 3. If $f: A \to \mathbb{R}$ is continuous and $[a, b] \subseteq A$ then f([a, b]) is a closed interval.