For these problems let $\mathbb A$ be the set of algebraic numbers.

- 1. Show $\mathbb{Q} \subseteq \mathbb{A}$.
- 2. Show $\mathbb{Q} \neq \mathbb{A}$.
- 3. Show $x \in \mathbb{A}$ if and only if there exists a polynomial, p(x) with **integer** coefficients such that x is a root of p(x).

For the following two problems use this result, known as the division algorithm for polynomials:

Theorem 1 If $p_1(x)$, $p_2(x)$ are (non-zero) polynomials then there exists unique polynomial q(x), r(x) such that:

$$p_1(x) = p_2(x)q(x) + r(x)$$

where deg $r(x) < deg p_2(x)$.

4. Find the q(x) and r(x) from above for the following two examples:

(a) $p_1(x) = x^3 - 2x + 1$ and $p_2(x) = x^2 - 1$. (b) $p_1(x) = x^5 + 15x^3 + 3x$ and $p_2(x) = x^{12} + x^8 - x^3 + 1$.

5. Show that if p(x) is a polynomial then a is a root of p(x) if and only if x - a divides p(x).