For these problems let \mathbb{A} be the set of algebraic numbers.

1. Show $\mathbb{Q} \subseteq \mathbb{A}$.
2. Show $\mathbb{Q} \neq \mathbb{A}$.
3. Show $x \in \mathbb{A}$ if and only if there exists a polynomial, $p(x)$ with integer coefficients such that x is a root of $p(x)$.

For the following two problems use this result, known as the division algorithm for polynomials:
Theorem 1 If $p_{1}(x), p_{2}(x)$ are (non-zero) polynomials then there exists unique polynomial $q(x), r(x)$ such that:

$$
p_{1}(x)=p_{2}(x) q(x)+r(x)
$$

where $\operatorname{deg} r(x)<\operatorname{deg} p_{2}(x)$.
4. Find the $q(x)$ and $r(x)$ from above for the following two examples:
(a) $p_{1}(x)=x^{3}-2 x+1$ and $p_{2}(x)=x^{2}-1$.
(b) $p_{1}(x)=x^{5}+15 x^{3}+3 x$ and $p_{2}(x)=x^{12}+x^{8}-x^{3}+1$.
5. Show that if $p(x)$ is a polynomial then a is a root of $p(x)$ if and only if $x-a$ divides $p(x)$.

