1. Prove that if $f \in R[a, b]$ and $c, r, d \in[a, b]$ (not necessarily distinct) then:

$$
\int_{c}^{d} f=\int_{c}^{r} f+\int_{r}^{d} f
$$

Note we proved this in class when $c<r<d$, but now you need to show it with our extended definition of the integral.
2. Prove that if $f, g \in R[a, b]$ and $c, d \in[a, b]$ (not necessarily distinct) then:

$$
\int_{c}^{d} f+g=\int_{c}^{d} f+\int_{c}^{d} g .
$$

Again we proved this in class when $c<d$.

