1. Show that for all $L \in \mathbb{R}, \frac{L^{n}}{n!} \rightarrow 0$.
2. Show that if $f(x)$ is differentiable on \mathbb{R} and for all $x \in \mathbb{R}, f^{\prime}(x)=f(x)$ and $f(0)=1$ then $f(x)=\exp (x)$.
3. Let $0<L<1$ and $f_{n}(x)=\sum_{k=0}^{n} x^{k}$. Show that f_{n} converges uniformly to some f on $[-L, L]$.
