1. Show that:
(a) $\exp (a-b)=\frac{\exp (a)}{\exp (b)}$
(b) $(\exp (a))^{q}=\exp (q a)$ where $q \in \mathbb{Q}$.
2. Define $a^{b}=\exp (b \ln (a))$. Prove the following (notice we have already shown all of these when the exponent is rational):
(a) $a^{b+c}=a^{b} a^{c}$
(b) $a^{b-c}=\frac{a^{b}}{a^{c}}$
(c) $(\exp (a))^{b}=\exp (b a)$
(d) $\left(a^{b}\right)^{c}=a^{b c}$
(e) $D_{x}\left(x^{a}\right)=a x^{a-1}$
(f) $D_{x}\left(a^{x}\right)=\ln (a) a^{x}$.
