Remember that in the last homework you showed: if 0 < L < 1 and $f_n(x) = \sum_{k=0}^n x^k$ then $\{f_n\}$ converges uniformly to some f on [-L, L].

- 1. Show that $f(x) = \frac{1}{1-x}$ on (-1, 1).
- 2. Show that if -1 < x < 1 then:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{x^k}{k} = -\ln(1-x)$$

3. Use the above with n = 8 to estimate $\ln(2)$.