Remember that in the last homework you showed: if $0<L<1$ and $f_{n}(x)=\sum_{k=0}^{n} x^{k}$ then $\left\{f_{n}\right\}$ converges uniformly to some f on $[-L, L]$.

1. Show that $f(x)=\frac{1}{1-x}$ on $(-1,1)$.
2. Show that if $-1<x<1$ then:

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{x^{k}}{k}=-\ln (1-x)
$$

3. Use the above with $n=8$ to estimate $\ln (2)$.
