1. Show that if $a, b \in \mathbb{R}$ then $C(a+b)=C(a) C(b)-S(a) S(b)$.
2. Show that S and C are periodic with period 2π that is for all $x S(x+\alpha)=S(x)$ and $C(x+\alpha)=C(x)$ is true for $\alpha=2 \pi$ and does not hold for any $0<\alpha<2 \pi$.
Hint 1: Show that if $S(\alpha)=0$ then $S(\alpha-\pi)=0$. Hint 2: Show $C(\pi)=-1$.
3. Show that $S(x)=C\left(\frac{\pi}{2}-x\right)=-C\left(x+\frac{\pi}{2}\right)$ and $C(x)=S\left(\frac{\pi}{2}-x\right)=S\left(x+\frac{\pi}{2}\right)$.
