1. Suppose the series $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ both converge and $c \in \mathbb{R}$. Show that:
(a) $\sum_{n=0}^{\infty} a_{n}+b_{n}$ converges to $\sum_{n=0}^{\infty} a_{n}+\sum_{n=0}^{\infty} b_{n}$
(b) $\sum_{n=0}^{\infty} c a_{n}$ converges to $c \sum_{n=0}^{\infty} a_{n}$
2. Show that if eventually $0 \leq a_{n} \leq b_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ converges then so does $\sum_{n=0}^{\infty} a_{n}$.
3. Suppose that the series $\sum_{n=0}^{\infty} a_{n}$ converges, show that $a_{n} \rightarrow 0$.
4. Suppose that $\frac{a_{n+1}}{a_{n}}>1$ eventually, show that the series $\sum_{n=0}^{\infty} a_{n}$ diverges.
