1. Show that if $0<r<s$ then $\lim _{n \rightarrow \infty} n\left(\frac{r}{s}\right)^{n}=0$
2. Show if $\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}$ has radius of convergence R then so does $\sum_{k=0}^{\infty} \frac{a_{k}}{k+1}\left(x-x_{0}\right)^{k+1}$ and $\sum_{k=0}^{\infty} k a_{k}\left(x-x_{0}\right)^{k-1}$.
Hint: we showed that the later two series had radius of convergence at least R.
