1. Consider the power series $\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}$.
(a) Show that radius of convergence of the series is ∞ if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0$.
(b) Show that radius of convergence of the series is 0 if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$.
2. Consider the power series $\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}$.
(a) Show that radius of convergence of the series is ∞ if $\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=0$.
(b) Show that radius of convergence of the series is 0 if $\lim \sup \sqrt[n]{\left|a_{n}\right|}=\infty$.

$$
n \rightarrow \infty
$$

3. Suppose $\left\{a_{n}\right\}$ is defined by:

$$
a_{n}= \begin{cases}n^{-n} & \text { if } n \text { is odd } \\ 2^{-n} & \text { if } n \text { is even }\end{cases}
$$

Find the radius of convergence of $\sum_{k=0}^{\infty} a_{k}(x-3)^{k}$

