- 1. Consider the power series $\sum_{k=0}^{\infty} a_k (x x_0)^k$.
 - (a) Show that radius of convergence of the series is ∞ if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0.$

(b) Show that radius of convergence of the series is 0 if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$.

2. Consider the power series $\sum_{k=0}^{\infty} a_k (x - x_0)^k$.

- (a) Show that radius of convergence of the series is ∞ if $\limsup_{n \to \infty} \sqrt[n]{|a_n|} = 0$.
- (b) Show that radius of convergence of the series is 0 if $\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \infty$.
- 3. Suppose $\{a_n\}$ is defined by:

$$a_n = \begin{cases} n^{-n} & \text{if } n \text{ is odd} \\ 2^{-n} & \text{if } n \text{ is even} \end{cases}$$

Find the radius of convergence of $\sum_{k=0}^{\infty} a_k (x-3)^k$